GMS-24 Measuring System

Features

- Based on NetQuakes Recorder
- Internet Enabled, Optionally Wireless, Multifunctional Measuring System
- 24 Bit ADC, > 140 dB, 32 Bit output word length
- 3 or 6 channels, up to 500 sps
- Linux Operating System with On Board Processing and Evaluation
- Timing via NTP (Network Time Protocol), Optional GPS or 433 MHz Wi-Synch
- Enhanced Connectivity Options for GSM, GPRS, Satellite, Radio Telemetry or Landline Modem, Wired/Wireless Network
- Ring Buffer Continuous Recording
- Data Stream Output, Network Triggering
- Rugged, Water Resistant Cast Aluminium Housing with Levelling Base Plate for easy installation and Replacement

Outline

The GMS-24 is the ground breaking second generation of the GeoSIG Measuring Systems with extended connectivity capability and flexibility, now in 24 Bit, reaching a dynamic range of more than 140 dB. The unit is based on the GMS technology developed in close coordination with USGS and deployed in high quantities in North America establishing the NetQuakes system.

It includes an Ethernet connection and optionally a 2.4 GHz Wi-Fi module to insure fast and reliable data transfer.

Its design and efficiency makes it the first choice for any application requiring seismic instruments. With its optimized installation, operation and maintenance philosophy, the GMS offers the real possibility to implement such high density arrays with total operating costs at a small fraction of conventional strong-motion seismograph networks.

The instrument’s software processes data in real time. If triggered by a seismic event, GMS calculates Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and Response Spectrum (RSA) at various frequencies of the event. GMS can report these parameters, which are related to the strength of shaking, to a data centre where a synopsis (such as a shakemap) for disaster management facilities can be generated in almost real time over the Internet. An event file is also recorded in the memory, which is sent out from the instrument and also securely accessible over the Internet.

GMS is self-contained and is equipped with an uninterruptible power-supply, which provides, excluding options, more than 24 hours emergency operation without external power. Since the battery and power management are critical components in applications, excessive care has been taken in the charger design.

The GMS uses an intelligent “Real Time Clock” (RTC) with self-learning temperature compensation at a fraction of power and thus cost of a TCXO. The RTC is able to synchronize with GPS or NTP (Network Time Protocol based on Internet UTC timing) to provide high timing accuracy.

The instrument can be locally connected to a laptop through its ports for configuration, testing or data retrieval. The internal memory card can also be simply exchanged to retrieve the data. Several advanced communication options exist such as for connection over the Internet; it can utilize a list of servers where the communication is based on a simple but highly secure file exchange.

Wired or Wireless Interconnected Network option enables the use of several units together in a time- and trigger- synchronised manner; wireless using the Wi-Fi and Wi-Synch options.
Specifications GMS-24 Measuring System

Applications
- Hi-resolution NetQuakes
- Seismic, Earthquake and Structural measuring and monitoring
- Urban Seismology
- High density monitoring networks
- Shake / Hazard mapping
- Disaster Management

Set-up and Configuration
Instrument setup is based on a configuration file in XML format. The configuration can be edited on-site through the instrument console, exchanged by replacing the memory card or remotely from a server. Even if the configuration file can be manually edited at any time, a tool is provided to edit it securely.

Data Analysis
The GeoDAS program provides basic data evaluation in the field. The instrument supplies data in miniSEED format. The GeoDAS Data Analysis Package covers the requirements of detailed laboratory analysis for most earthquake and civil engineering applications. Any other software package reading miniSEED can be used.

Sensor
Various GeoSIG sensors as well as any other custom sensors can be housed internally or connected externally to the unit. In case of internal sensor, the levelling is done on the base plate of the GMS via three levelling screws. The base plate is mounted using a single bolt during installation.

Digitizer
Channels: 3 or 6
A/D conversion: 24 bit delta-sigma converters running in parallel
DSP: 32 bit output word length
Dynamic range: Can be any integer division of:
3 chn: 500 SPS (ie. 500, 250, 167, 125, 100, ..., 1)
6 chn: 200 SPS (ie. 200, 100, 67, 50, 40, ..., 1)
More options are available depending on the selected maximum rate.

Bandwidth: 40% of sampling rate
Anti Aliasing Filter: FIR (finite impulse response)

Triggering
Several "Trigger sets" can be defined in the instrument with each one freely defined regarding the source of trigger, trigger processing and selected channels for storage. For each trigger a "Minimum exceedance duration" can be defined to ensure that the unit will not trigger on spikes.

Trigger filter
High pass filter: None, 0.1, 0.2, 0.5, 1 or 2 Hz
Low pass filter: None, 2, 5, 10 or 20 Hz
Band pass filter response: 2 poles on each side* (40 dB / decade)
*: Any other value is freely selectable, as long as it does not lead to data loss. Fully independent low-, high- or bandpass trigger filters can be configured.

Level Triggering
Range: 0.01 to 100 % of full scale

CPU
Processor: Freescale ColdFire
RAM: 32 MByte
Flash: 16 MByte
Operating System: uCLinux

Time Base
Standard accuracy: 20 ppm (10 min/year @ -10 to +50 °C), higher accuracy optional
Accuracy after warm-up: 0.5 ppm (16 h/year or 2 ms/h)
Accuracy with NTP: ±10 ms accuracy, assuming reasonable access to NTP-servers

Data Stream
Method: Ringbuffer files with configurable duration.

Power Supply
Input voltage: 90 ~ 260 VAC / 50 ~ 60 Hz
Type: Switched external power supply
Internal battery: Rechargeable, 12 VDC, 7.2 Ah
Lead Battery
Power consumption: 130 mA @ 12 VDC for 3 channels
200 mA @ 12 VDC for 6 channels
Autonomy: > 1 day
Battery charger: Temperature compensated with battery fault detection.

Communication
Configuration, Data Retrieval: via ETHERNET, SERIAL or CONSOLE, or directly from removable memory card.
Network requirements: Fixed or Dynamic IP on Ethernet LAN and/or Internet connection with Ethernet interface.
Wii network with WEP or WPA security parameters for instrument configuration.
Security: GeoDAS proprietary protocol
Checksum and software handshaking

Alarm / Seismic Switch / Warning Option
Alarms: 3 independent relay contacts for trigger alarm or error
Alarm levels: Based on event triggers
Relay Hold-On: 1 to 60 seconds
Capacities: The contacts are suitable for a low voltage control. In case large load must be switched then external relays should be implemented.
Max voltage: 125VAC / 125 VDC
Max current: 250 mA

Interconnected Network Option
Wired or Wireless (Wi-Synch) time synchronisation (Common Time) among several units is optional. Trigger synchronisation (Common Trigger) is handled over the Wired/Wireless Ethernet.

Modem
Internal or external modem of different types are available optionally.

Self Test
Permanent self monitoring of hardware and software components without affecting their normal operation.
Periodical state of health report based on comprehensive test of instrument. Period can be set in minutes and/or hours and/or days.
Periodical sensor test. Period can be set in days.

Environment
Operational temperature: -20 to +70 °C
Storage temperature: -40 to +45 °C
Humidity: 0 to 100 % RH (non condensing)

Housing
Type: Cast aluminium housing
Size: 296 x 175 x 140 mm (W x D x H)
Size with base plate: 296 x 225 x 156 mm (W x D x H)
Weight: 4.7 kg (optional < 4 kg) excl. sensor, battery, etc
Protection: IP65 (NEMA 12), optionally IP67
Mounting: Base plate with single bolt, surface mount.
When base plate levelled and fixed, GMS can be replaced without re-levelling.

Specifications subject to change without notice
Copyright © GeoSIG Ltd, 27.09.2012/ GS_GMS-24_Leaflet_V14.doc