Tel: +41 44 810 21 50 Fax: +41 44 810 23 50 E-mail: info@geosig.com Web: www.geosig.com

GMS-24 Measuring System

Features

- Based on NetQuakes Recorder
- Internet Enabled, Optionally Wireless, Multifunctional Measuring System
- 24 Bit ADC, > 140 dB,32 Bit output word length
- ☐ 3 or 6 channels, up to 500 sps
- Linux Operating System with On Board Processing and Evaluation
- □ Timing via NTP (Network Time Protocol), Optional GPS or 433 MHz Wi-Synch
- Enhanced Connectivity Options for GSM, GPRS, Satellite, Radio Telemetry or Landline Modem, Wired/Wireless Network
- □ Ring Buffer Continuous Recording
- Data Stream Output, Network Triggering
- Rugged, Water Resistant Cast Aluminium Housing with Levelling Base Plate for easy installation and Replacement

Outline

The GMS-24 is the ground breaking second generation of the GeoSIG Measuring Systems with extended connectivity capability and flexibility, now in 24 Bit, reaching a dynamic range of more than 140 dB. The unit is based on the GMS technology developed in close coordination with USGS and deployed in high quantities in North America establishing the NetQuakes system.

It includes an Ethernet connection and optionally a 2.4 GHz Wi-Fi module to insure fast and reliable data transfer.

Its design and efficiency makes it the first choice for any application requiring seismic instruments. With its optimized installation, operation and maintenance philosophy, the GMS offers the real possibility to implement such as high density arrays with total operating costs at a small fraction of conventional strong-motion seismograph networks.

The instrument's software processes data in real time. If triggered by a seismic event, GMS calculates Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and Response Spectrum (RSA) at various frequencies of the event. GMS can report these parameters, which are related to the strength of shaking, to a data centre where a synopsis (such as a shakemap) for disaster management facilities can be generated in almost real time over the Internet. An event file is also recorded in the memory, which is sent out from the instrument and also securely accessible over the Internet.

GMS is self-contained and is equipped with an uninterruptible powersupply, which provides, excluding options, more than 24 hours emergency operation without external power. Since the battery and power management are critical components in applications, excessive care has been taken in the charger design.

The GMS uses an intelligent "Real Time Clock" (RTC) with self-learning temperature compensation at a fraction of power and thus cost of a TCXO. The RTC is able to synchronize with GPS or NTP (Network Time Protocol based on Internet UTC timing) to provide high timing accuracy.

The instrument can be locally connected to a laptop through its ports for configuration, testing or data retrieval. The internal memory card can also be simply exchanged to retrieve the data. Several advanced communication options exist such as for connection over the Internet; it can utilize a list of servers where the communication is based on a simple but highly secure file exchange.

Wired or Wireless Interconnected Network option enables the use of several units together in a time and trigger synchronised manner; wireless using the Wi-Fi and Wi-Synch options.

Specifications GMS-24 Measuring System

Applications

- Hi-resolution NetQuakes
- Seismic, Earthquake and Structural measuring and monitoring
- Urban Seismology
- High density monitoring networks
- Shake / Hazard mapping
- Disaster Management

Set-up and Configuration

Instrument setup is based on a configuration file in XML format. The configuration can be edited on site through the instrument console, exchanged by replacing the memory card or remotely from a server. Even if the configuration file can be manually edited at any time, a tool is provided to edit it securely.

Data Analysis

The GeoDAS program provides basic data evaluation in the field. The instrument supplies data in miniSEED format. The GeoDAS Data Analysis Package covers the requirements of detailed laboratory analysis for most earthquake and civil engineering applications. Any other software package reading miniSEED can as

Sensor

Various GeoSIG sensors as well as any other custom sensors can be housed internally or connected externally to the unit. In case of internal sensor, the levelling is done on the base plate of the GMS via three levelling screws. The base plate is mounted using a single bolt during installation.

Digitizer

Channels: 3 or 6

A/D conversion: 24 bit delta-sigma converters running in parallel

DSP: 32 bit output word length

>140 dB Dynamic range:

Can be any integer division of: Sampling rate:

3 chn: 500 SPS (ie. 500, 250, 167, 125, 100, ...,

6 chn: 200 SPS (ie. 200, 100, 67, 50, 40, ..., 1) More options are available depending on the

40% of sampling rate Bandwidth: Anti Aliasing Filter FIR (finite impulse response)

Triggering

Several "Trigger set"s can be defined in the instrument with each one freely defined regarding the source of trigger, trigger processing and selected channels for storage. For each trigger a "Minimum exceedance duration" can be defined to insure that the unit will not trigger on spikes.

Trigger filter

High pass filter: Low pass filter:

None, 0.1, 0.2, 0.5, 1 or 2 Hz* None, 2, 5, 10 or 20 Hz*

2 poles on each side* (40 dB / decade) Band pass filter response:

*: Any other value is freely useable, as long as does not lead to data loss. Fully independent high-, low- or bandpass trigger filters can be configured.

Level Triggering

Range:

0.01 to 100 % of full scale

STA/LTA Triggering

0.01 to 100 seconds STA period: LTA period: 1 to 1000 seconds STA/LTA-Ratio: 1 to 100 ratio

Event recording

Pre-event memory: 1 to 100 seconds Post-event duration: 1 to 1000 seconds

Event summary

Including PGA, PGV, PGD, RSA Transmission delay: User defined from trigger time

Ring Buffer

User can request backward from console or Usage: remotely from server for portion of the buffer as

start time/date and duration. Ringbuffer files with configurable duration.

Method: Data stream

0 ms, full correction included Total Data Time Lag: GSBU, optionally Seedlink, Earthworm Protocol:

Storage Memory Size and Type:

2 GByte Removable Compact Flash Card higher capacity up to 32 GByte on request

FAT32 formatted

Management: Intelligent management of memory card capacity

using policies as per file type and ring buffer capacity specification.

miniSEED

Recording format: **Estimated Capacity:**

50 SPS: 18 Mb / day 100 SPS 36 Mb / day 200 SPS: 72 Mb / day 500 SPS: 180 Mb / day

since the data is compressed, capacity depends

on the context of the data.

Freescale ColdFire Processor: RAM: 32 MByte 16 MByte Flash:

Operating System:

Time Base Standard accuracy:

accuracy optional Accuracy after learn: 0.5 ppm (16 s/year or 2 ms/h)

Accuracy with NTP: ±10 ms accuracy, assuming reasonable access

uCLinux

External time interfaces: GPS (optional), Interconnection (optional)

Power Supply

90 - 260 VAC / 50 - 60 Hz Input voltage Type Switched external power supply Internal battery: Rechargeable, 12 VDC, 7.2 Ah Lead Battery

130 mA @ 12 VDC for 3 channels Power consumption: 200 mA @ 12 VDC for 6 channels

Autonomy:

Battery charger: Temperature compensated with battery fault

Indicators

Security:

Serial ports:

Baud rates:

AC Power present LED, Green Green: Run/Stop LED Yellow: Event/Memory LED Blue: Network link/Traffic LED Red Warning/Error LED

Communication

Configuration, Data Retrieval: Network requirements

via ETHERNET, SERIAL or CONSOLE, or directly from removable memory card. Fixed or Dynamic IP on Etherne LAN and/or Internet connection with Ethernet interface. Wifi network with WEP or WPA security parameters for instrument configuration. GeoDAS prop<mark>riet</mark>ary protocol Checksum and software handshaking

20 ppm (10 min/year @ -10 to +50 °C), higher

2 ports, 3 ports optional

19200 bauds Console: Stream: . 38400, 57600, 115200 bauds

Alarm / Seismic Switch / Warning Option

Alarms: 3 independent relay contacts 0 for trigger alarm or error

Alarm levels: Based on event triggers

(NO or NC selectable during order)

1 to 60 seconds Relay Hold-On: (User programmable)

The contacts are suitable for a low voltage Capacity:

control. In case large load must be switched then external relays should be implemented.

0

125VAC / 125 VDC Max voltage: Max current: 250 mA

Interconnected Network Option

Wired or Wireless (Wi-Synch) time synchronisation (Common Time) among several units is optional. Trigger synchronisation (Common Trigger) is handled over the Wired/Wireless Ethernet.

Internal or external moderns of different types are available optionally.

Permanent self monitoring of hardware and software components without affecting their normal operation.

Periodical state of health report based on comprehensive test of instrument.

Period can be set in minutes and/or hours and/or days. Periodical sensor test. Period can be set in days.

Environment

Operational temperature: -20 to +70 °C Storage temperature:

0 to 100 % RH (non condensing) Humidity:

Housing

Protection:

Mounting:

Type: Cast aluminium housing 296 x 175 x 140 mm (W x D x H) Size with base plate: 296 x 225 x 156 mm (W x D x H)

4.7 kg (optional < 4 kg) excl. sensor, battery, Weight:

0.3 kg internal sensor, 2.6 kg battery, 1.3 kg base plate, ask for other options IP65 (NEMA 12), optionally IP67

Base plate with single bolt, surface mount. When base plate levelled and fixed, GMS can

be replaced without re-levelling.

